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The stability conditions for the steady-state motion of the tubular layer of a treated deformable 
material in a rotating horizontal cylinder are determined analytically. With allowance for the 
accepted similarity criteria, universal diagrams of the boundaries of transition of modes of 
motion of liquid and loose materials in the cylinder are obtained on the basis of experimental 
data. Analysis of the diagrams shows the identity of the stability conditions for a liquid layer 
and a loose medium, which can be regarded as a Newtonian liquid upon fast relative motions. 
It is shown also that the analytical stability conditions for the liquid layer correspond to the 
experimental data for large Reynolds numbers when the mode hysteresis occurs and do not 
correspond to these data for small Reynolds numbers when secondary circulating flows form. 

The problem of determining the modes of motion of a deformable material that  partially fills a cylinder 
rotating around a horizontal axis is of great applied interest for specialists who study the dynamics of hori- 
zontal drum-type machines. The conditions of mutual transition of nontubular circulating and quasitubular 
solid-state forms of motion which correspond to low and high velocities of rotation are of great importance. 
Based on analysis of the working processes of these systems, one can reduce all forms of motion of a treated 
material to two most characteristic forms, namely, the motions of a viscous Newtonian liquid and a loose 
body. 

In the mode of fast motion of a loose material, which can be regarded as a granular medium, its particles 
move chaotically, similarly to the molecules in a liquid, and when the flow propagates in the longitudinal 
direction, the particles begin to move in the transverse direction; these displacements transmit additional 
momenta from layer to layer and cause the appearance of viscous tangential stresses. The internal stresses in 
the medium arise owing to the momentum transfer and depend greatly on the shear velocity, as is the case in 
a liquid [1, 2]. The experimental data  show that  the flow of a loose material in a rotating horizontal cylinder 
is classified among fast motions; in this case, the material behaves as a viscous liquid [3-6]. Therefore, to 
describe the motion of a loose material in a cylinder, the mechanical model based on the Navier-Stokes 
equations is used. 

The modes of motion of a liquid with low degree of filling of the cylinder hollow was studied experi- 
mentally by White and Higgins [3, 4]. In the case of the nontubular form of fluid motion, experimental and 
theoretical studies of the position of a free surface are given in [5] for high viscosity and in [6] for a high 
degree of filling. The problem of determination of high-speed modes of motion of a tubular layer of an ideal 
liquid was solved by Phillips [7]. The loss of motion stability of the surface of a viscous liquid which fills a 
considerable part of the hollow of a rotat ing cylinder was investigated in [8] with allowance for gravity. The 
problem of determination of the position of the free surface of the tubular layer of a viscous liquid with the use 
of the boundary-layer theory was solved analytically by Zhdan [9] and numerically by Deiber and Cerro [t0] 
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Fig. 1. Calculated flow pattern of the tubular layer 
of a deformable material. 

with experimental check for a lamina. Badratinova [11] obtained the existence conditions for the plane flow 
regimes of tile tubular layer of a viscous liquid. The nonexistence of these modes can cause three-dimensional 
secondary flows [12]. In [13], the characteristic modes of fluid motion are treated taking into account pertur-  
bations, and an at tempt  to generalize and extrapolate  the results in the form of a two-parameter diagram is 

undertaken. 
In the present study, the conditions of motion stability of the tubular layer of a deformable material 

t reated as a viscous liquid in a cylinder are found analytically. The problem is formulated as in [7], but  
the liquid is assumed to be viscous. The motion similarity criteria are found and universal diagrams that  
determine the boundaries of transition of the characteristic modes of motion of a liquid and loose materials 
are obtained on the basis of experimental data. 

We now consider a cylinder of radius R with smooth face walls partially filled with a liquid and rotating 
uniformly with angular velocity w around the horizontal axis perpendicular to the acceleration of gravity g. 
With  a large angular velocity of the cylinder, the liquid in the hollow takes the shape of a tubular layer with 

external radius R and free-surface radius cR (0 <. c <<. 1) (Fig. 1). 
The fluid motion is considered in the plane perpendicular to the rotation axis of the cylinder. We 

introduce the polar coordinate system (r, ~2); U and V are the velocity components of the liquid. Then, the 

equations of motion and continuity have the form 
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where p is the pressure, p is the density of the liquid, ~, is the kinematic viscosity, and t is the time. 
The solid-state rotation in the form of a tubular  layer in the absence of gravitational forces is assumed 

to be the undisturbed motion of a liquid. Here the velocity and pressure components take on the following 
values: U = O, V = wr, and p = (1/2)pw2(r 2 " c2R2). 

The gravity causes stationary velocity and pressure perturbations in this steady-state motion. The 
velocity perturbations are considered insignificant compared with wR, and the displacements of the free 
surface are assumed to be insignificant compared with cR. The problem is solved in the region near the 
free surface and far from the rigid wall. Therefore, the tangential stresses are not taken into account and 
the pressure is assumed to be determined only by gravity and the forces of inertia. After the replacement 

= r / R  (c <~ ~ <~ 1), one can approximate that  

v = ~ R U o ,  V = ~R(~ + V0), p = (1/2)~2R2[(~ 2 - d )  + p0] - pgR~cos~,, (2) 
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where U0, V0, and P0 are the stat ionary t ime-independent perturbations.  
The  boundary  conditions on a rigid wall have the form 

U 0 = V 0 = 0  for 7 = 1 .  (3) 

Let  7 = c +  5o (4) on the free surface with constant pressure, where 50 is the dimensionless displacement 
which is small compared with c. With  allowance for (3), after transformations and equating the surface 
pressure to zero, the dynamic boundary  condition on the free surface takes the form 

Po + 2c5o = -2cg/(w2R) cos~  for 7 = c. (4) 

The  kinematic boundary condition on the free surface is as follows: 

050 
U 0 =  0p  for ~ = c .  (5) 

The  per turbat ions U0 and V0 are assumed to be small. Near the free surface and far from the rigid 
wall, it is possible to ignore the term 02V/Or 2. On the basis of (1), with allowance for (2) the equations of 
per tu rbed  motion take the form 
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where Ref = wc2R2/u is the Reynolds number on the free surface. 
The  boundary  conditions on the rigid wall and the free surface have been formulated above [see (3)-(5)]. 
We now search for a solution in the form 

5 0 = A ( ~ ) c o s ~ ,  po=P(7,~z)cos~, U0=)c(r / ,~)s ingz,  V 0 - - ~ ( 7 , ~ ) c o s ~ .  

We now examine the approximate solution .for ~ = 4*, where 4" is the angle that  corresponds to the 
site at which the tubular  layer of a viscous liquid on the free surface begins to fail. 

In the upper thickened par t  of the tubular  layer, the gravitational and centrifugal forces are directed 
oppositely, and the necessary stability condition for the permanently per turbed motion of the fluid layer is 
a positive value of the radial pressure gradient [7]. According to numerical and experimental da ta  [9, 10], 
the layer of a viscous liquid fails in the upper right part  of its cross section for 7r/2 < p* < 7r because of 
a certain lag of the free surface behind the rigid wall of the rotat ing cylinder. Based on the da ta  of [10] 
and our results, for the angle 4" with the greatest thickening of the tubular layer, which corresponds to the 
minimum radial pressure gradient on the free surface of a liquid, the dependence can be approximated in the 
form tan ~* = -0.009c-1"5; note that  4" = arctan ( -0 .009c -1"5) + ~. 

In the vicinity of ~*, Eqs. (6) can 

X - 2 ~ =  

27 

be wri t ten in the form 

1 i t a n  4 "  (72X, 

1 
+ ( 2 X -  ~), X + 7 X ' -  ~ = 0 

tan  ~*Ref 

(7) 

(the primes refer to the derivatives with respect to 7), and the boundary conditions in the form X = 0 for 
7/= 1; P + 2cA = - 2 c / F r  and X + A = 0 for 7 -= c, where Fr = w2R/g is the Froude number on the cylinder 

surface. 
After t ransformation of (7) and elimination of P ,  we obtain the equation for determining X 

~2X" + a~?x' + bx = 0, (8) 

where a = (3Ref tan  4" + 3 t a n 2 ~  * - 1 ) / (Re f t an  4" + t a n 2 ~  * - 1) and b = 1 / (Ref tan  4" + tan2 ~Y * - 1). 

Solution (8) has the form 
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Fig. 2. Experimental check of the motion stability 
conditions for the tubular layer of a liquid for R = 
0.075 m (points refer to the experiment, and curves 
to the calculation): 1) u ---* 0 (Fr -= 3/c): 2) u = 
10-:~m2/sec; 3) u -* oo(Fr : 1/c). 

x = A ( ,  ~ - , ~ ) ,  

where a = - d  - v / - ~ -  b, fl = - d  + v/-~ -~- b, d -- (Ref tan  ~* + t a n ~ * ) / ( R e f t a n  ~;* + t a n 2 ~  * - 1), 
and d = - ( 1 / F r ) { [ ( a  - 1)@ - (fl - 1)c~][1/(Reftan ~;*) - 1] - (c a - c~)} -1. Therefore, we have ~(~/, ~*) = 
d [ ( a +  1 ) ,  ~ - ( 3 -  1) ,3] ,  P ( , ,  ; * )  = 2 A , [ ( ~  - ])V~ - ( 3 -  !)7/Z][1/(Ref t an  ; * )  - 1], and A ( ; * )  = - A ( c  '~ -c~). 

The stability condition for the s ta t ionary motion of the tubular  layer of a liquid can be approximated 

in the form 

COS ~ *  

Fr> ----f---[(a-1)aca-(3-1)3c~](Reftlan ~, -1) 

Ref tan ~* 

As v --~ 0 (ideal fluid), Ref ~ oc, and condition (9) degenerates to the condition obtained in [7]: 

Fr > 3/c. (10) 

As ~ --* oo (absolute viscous fluid), we have Ref ~ 0, and condition (9) takes the form 

Fr > 1/c. (11) 

The  experimental  check of the stability conditions (9) is shown in Fig. 2 for water (circles) and castor 
oil (triangles). The s teady-sta te  modes above the curves correspond to the tubular  form of motion, and those 

below the curves to the nontubular  form. Figure 2 shows good agreement between the results of the solution 

of Eq. (9) and the experimental  data.  
The  motion of a liquid (Fig. 3a) and a loose mater ial  (Fig. 3b) can be conventionally divided into 

a number  of characteristic zones in the transverse cross section of the cylinder with qualitatively different 

flows. The  combinations of the zones determine the modes of motion of a deformable material.  For a loose 
material ,  the following characteristic modes connected with realization of technological processes [14] are 

distinguished in the order of increase in the velocity of rotation: the mode without throwing up (includes 

only the solid-state and falling-off zones), the mode with partial  throwing up (the three zones appear) ,  the 
mode with complete throwing up (no falling off occurs), the mode of partial  centrifuging (on the surface of 

the cylinder, a solid-state tubular  layer is formed from par t  of the material  and this is followed by throwing 
up of the other part) ,  and the tubular  mode (the entire material  forms a solid-state uniform tubular  layer). 

For quite a close similarity of the motion of a liquid and a loose deformable material  in the cylinder 
as a whole (Fig. 3), the distinctive feature of the fluid motion is the effect of adhesion to a rigid wall and 
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Fig. 3. Scheme of the characteristic motion zones in the cylinder for a liquid (a), where 1 is the 
tubular layer, 2 is the circulation zone, and 3 is the separation zone with falling, and for loose 
material (b), where 4 is the solid-state zone, 5 is the falling-off zone, and 6 is the throwing-up zone 
with falling. 

coalescence together of the layers with relative slip, and the motion of a loose body is distinguished by the 
formation of a slope upon falling off and solid-state motion near the wall. 

The  experiments were performed on a setup equipped with nine changeable drums (R -- 
0.01325-0.21200 m) for a liquid and twelve drums (R = 0.0047-0.2120 m) for a loose material.  For vi- 
sualization of the motion, one face wall of the drums was transparent.  As working liquids, water, spindle oil, 
and castor oil with v -- 10 -6, 49 �9 10 -6, and 10 -3 m 2, respectively, were used. As working materials, three 
kinds of loose material with an average particle size of 0.5, 2, and 10 mm, respectively, were used. The  degree 
of filling of the drum hollow with the material ~e ranged from 0.10 to 0.95 [~e = 7 / (TrR2L)] ,  where v is the 
volume of the material in the cylinder hollow and L is the length of the hollow. 

The  velocities of stationary rotat ion of the drum upon formation and fracture of the tubular  layer 
during steady motion followed by smooth acceleration and deceleration were measured. For a loose material, 
the velocities of rotat ion corresponding to transitions of the characteristic modes of motion were determined. 
For ~e = 0.1, the experimental da ta  for a liquid are close to the results of [3, 4, 10]. 

An analysis of the experimental results showed that,  in this case, the similarity criteria of steady-state 
motion of a deformable material are the Reynolds and Froude (Re and Fr) numbers on the radial surface 
of the cylinder and the degree of filling of the cylinder with material ~e. The  first criterion characterizes 
friction forces, the second criterion characterizes the forces of inertia, and the third one characterizes the 
geometrical motion parameters.  The experiments showed that  the frictional properties upon motion of all 
the loose materials examined [the angle of natural  slope in the motion is O ~ 30 ~ (Fig. 3b) and the angular 
velocities of the cylinder, which correspond to transitions of the modes] were almost identical. Since all the 
loose materials in the motion considered can be regarded as liquids with quite close values of viscosity, it is 

assumed that  v ~ 1 m2/sec for simplicity; as the experiment shows, this is close to the value of v for a liquid 
with a similar behavior under similar conditions. 

Figure 4 shows a comparative graphic analysis of the motion stability conditions for a liquid layer 
according to I7], our analytical results obtained by means of (9), and the experimental  data. In the coordinates 
of Re and Fr, for ~e = 0.5 the curves that  correspond to transit ion of the tubular  to the nontubular  mode 
and inversely are constructed. The zone above the boundary  corresponds to the tubular form of motion. The  
sloping dashed straight lines correspond to the modes of fluid motion in a constant-radius cylinder rotat ing 
with different velocities. For large Re, the phenomenon of mode hysteresis is observed, i.e., the velocity of 
rotat ion of the cylinder upon formation of a tubular  layer during its acceleration exceeds the rate of layer 
fracture upon deceleration [3, 4, 10]. For small Re, the rates of formation of a layer during acceleration and 
the rates of fracture during deceleration are the same; this is due to the appearance of secondary circulating 
flows in the form of a cylinder on the internal surface of the layer [10]. The resulting condition (9) agrees 
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Fig. 4. Diagram of transition of the tubular mode of motion of a liquid to the nontubular mode 
and inversely for w = 0.5: dashed curves 1 and 2 are the data calculated according to [7] and 
(9), respectively, solid cnrves are the experimental data corresponding to transition of the tubular 
to the nontubular mode upon deceleration of the cylinder (3), the nontubular to the tubular one 
upon acceleration (4), and the tubular to the nontubular mode and inversely upon deceleration or 
acceleration (5). 
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Fig. 5. Diagram of transition of the modes of motion of a loose material for ~e = 0.5: curve I 
refers to the throwing-up-free mode, II to the mode with partial throwing up, III to the mode with 
complete throwing up, IV to the mode with partial centrifuging, and V to the tubular mode. 

well with tile experimental data for the angular rate of fracture of the layer upon deceleration of the cylinder; 

however, it becomes incorrect when secondary flows emerge. 

Figure 5 shows the diagram of transition of the modes of motion of a loose material in the cylinder for 

~e = 0.5; this diagram was constructed with the use of the experimental data obtained in the coordinates of 

Re and Fr. The hysteresis for the loose medium was not observed. As Re -~ e~, the ordinate of the boundary 

of modes IV and V corresponds to the condition Fr --~ 3/c  on the free surface of the layer; this condition 

corresponds to (10), and the ordinate of the boundary of modes I I I  and IV to a similar condition Fr --* 3 

on the cylinder surface. As Re --, 0, the ordinate of the boundary of modes IV and V corresponds to the 

condition Fr --~ 1/c on the free surface which corresponds to (11), and the ordinate of the boundary of modes 

I I I  and IV to a similar condition Fr --~ 1 on the cylinder surface. In addition, as Re ~ co, the boundary of 

modes I I I  and IV merges with the boundary of modes IV and V, and the ordinate of the boundary of modes 

I and II corresponds to the condition Fr --~ sin a (Fig. 3b), which corresponds to particle separation from the 

cylinder surface [14]. As Re --~ 0, the ordinates of the boundaries of modes I - I I I  tend to zero. 

To determine the velocity of rotation of the cylinder c~ that  corresponds to transition of the modes of 

motion of a deformable material by means of the diagrams, a sloping straight line is constructed with the use 

of known parameters R and v for a current velocity, as done in Fig. 4. The quantity a; is calculated with 

the use of the coordinates of the intersection point of this straight line with the diagram for a corresponding 

degree of filling. 

A comparative analysis of the diagrams shows that the motion stability condition in a rotating hor- 

izontal cylinder of the tubular layer of a liquid and a loose medium as varieties of deformable material are 

identical. The onset of the formation of a layer of a loose material on the cylinder surface is also a similar 

condition. These conditions depend greatly on the values of Re and ~e; therefore, the "critical" velocity of 
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rotation of the cylinder [14], which corresponds to the condition Fr ---* 1 on the free surface and is used 
to calculate technological modes, determines inadequately the boundaries of transition of the tubular and 
nontubular forms of motion of a material. The resulting diagrams can be used for more correct calculations. 
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